Welcome, Guest. Please login or register.
May 28, 2022, 03:02:24 pm

Login with username, password and session length


  • Total Posts: 335
  • Total Topics: 191
  • Online Today: 19
  • Online Ever: 518
  • (January 21, 2020, 05:24:49 pm)
Users Online
Users: 0
Guests: 7
Total: 7


Welcome to the Cancer Health Forums, a round-the-clock discussion area for people who have any type of cancer, their friends and family and others with questions about living with cancer. Check in frequently to read what others have to say, post your comments, and hopefully learn more about how you can reach your own health goals.

Privacy Warning: Please realize that these forums are open to all, and are fully searchable via Google and other search engines. If this concerns you, then do not use a username or avatar that are self-identifying in any way. We do not allow the deletion of anything you post in these forums, so think before you post.
  • The information shared in these forums, by moderators and members, is designed to complement, not replace, the relationship between an individual and his/her own physician.
  • All members of these forums are, by default, not considered to be licensed medical providers. If otherwise, users must clearly define themselves as such.
  • Product advertisement (including links); banners; and clinical trial, study or survey participation—is strictly prohibited by forums members unless permission has been secured from the Cancer Health Forum Moderators.
Finished Reading This? You can collapse this or any other box on this page by clicking the symbol in each box.

Author Topic: Staying Healthy After Cancer  (Read 1020 times)

Offline danialthomas

  • Jr. Member
  • **
  • Posts: 58
  • Doctor Of Osteopathy
    • View Profile
    • Thomas Health Blog
Staying Healthy After Cancer
« on: August 17, 2021, 07:29:57 pm »
Many people ask me what I recommend they should do after achieving remission to improve and maintain their health. Because I believe in leading by example. below are the proactive, science-based steps that I take and that I recommend others try to take to:

• Stay energetic, fit, and mentally sharp
• Overcome many of the biological constraints that limit our ability to slow the aging process and extend lifespan beyond the average of 78.7 years and possibly even beyond the maximum of 122
• Increase resilience against “age-associated diseases,” such as cancer, heart attack, congestive heart failure, stroke, hypertension, obesity, type 2 diabetes, chronic kidney disease, osteoarthritis, osteoporosis, chronic obstructive pulmonary disease, pulmonary fibrosis, frequent infections, autoimmunity, cataracts, glaucoma, macular degeneration, depression, dementia, Parkinson’s disease, chronic fatigue, and frailty

STEP 1: Cultivate a healthy lifestyle
• Eat an organic, whole-foods, methionine-restricted, nutrient-dense diet
• Strength-training 3 days per week and brisk walking on the other days
• Drink plenty of pure water
• Maintain gut health
• Don’t smoke or drink
• Get sound sleep
• Spend time outdoors
• Cultivate a spirit of playfulness and gratitude

STEP 2: Maintain optimal bloodwork

• Cholesterol: 140-160 mg/dL
• LDL: <100 mg/dL
• HDL: ≥60 mg/dL
• Triglycerides: <100 mg/dL
• Cortisol (stress hormone): ≤12 µg/dL
• Fibrinogen (blood clot potential): ≤275 mg/dL
• hs-CRP (silent inflammation): ≤0.5 mg/L
• Homocysteine (methylation): ≤7.5 µmol/L
• Fasting glucose: 65-85 mg/dL
• Fasting insulin: ≤5 µIU/mL
• GlycoMark® (absence of post-mealtime glucose spiking): ≥20 µg/mL
• Hemoglobin A1c (average glucose level for the last 90 days): ≤5.2%
• Ferritin (iron): 30-50 ng/mL
• Vitamin D: 40-60 ng/mL

STEP 3: Eliminate senescent cells and decrease their toxic secretions
Cellular senescence is an age-related process in which older cells stop dividing to create healthy new cells. This leads to the deterioration of tissues and organs and manifests in various diseases, such as arthritis, osteoporosis, heart disease, cancer, diabetes, frailty, and dementia. Senescent cells accumulate over time and secrete copious amounts of pro-inflammatory molecules and protein-degrading compounds that drive tissue damage and physical decline. In a vicious cycle, senescent cells induce the senescence of surrounding healthy cells through a “bystander” effect, which leads to more senescent cells and further degradation of one’s health and longevity.
Many scientists believe that by eliminating as many senescent cells as possible and suppressing the secretion of the harmful compounds from the remaining senescent cells (also known as “senotherapy”), we could lead a more disease-free life, enjoy a more youthful vigor, and extend lifespan. Based on the latest science, to eliminate senescent cells, I take a “senolytic” cocktail consisting of prescription dasatinib, bioavailable quercetin and fisetin, and FOXO4-DRI peptide. To decrease the toxic secretions of those senescent cells that cannot be eliminated, I take a “senomorphic” (also known as “senostatic”) cocktail of prescription rapamycin, specialized pro-resolving mediators, tocotrienols, and bioavailable apigenin and melatonin.

STEP 4: Boost the effects of fasting
A growing body of scientific literature has shown that fasting (prolonged calorie restriction) can lead to longer and healthier lives. Most of the physiological effects of fasting emanate from the following mechanisms:
Increased AMPK activity: Adenosine monophosphate-activated protein kinase (AMPK) is an enzyme that is involved in several longevity pathways and plays a key role in energy metabolism, insulin sensitivity, inflammation control, DNA repair, and muscle performance. Increasing AMPK activity reduces the risk of heart attack, stroke, hypertension, obesity, diabetes, osteoporosis, cancer, and Alzheimer’s disease.
Decreased mTOR signaling: Mechanistic target of rapamycin (mTOR) is a central regulator of cell metabolism, growth, proliferation, and survival. When mTOR is constantly elevated, it triggers numerous harmful events that increase the risk of age-associated diseases.
Increased autophagy and mitophagy: Autophagy and mitophagy are the natural cleansing processes the body uses to remove accumulated cellular waste and damaged mitochondria that interfere with normal cell function. Autophagy and mitophagy decline with age, causing cells to be damaged at an increasing rate, resulting in numerous age-related diseases. Studies have shown that stimulating autophagy and mitophagy leads to improvements in health and longevity.
Upregulation of sirtuins: Sirtuins are a family of proteins that play important regulatory roles in numerous cellular functions. Sirtuins impact the body’s inflammatory balance, cell growth, circadian rhythms, energy metabolism, neuronal function, and stress resistance. Sirtuins counteract age-related declines in brain function, help maintain healthy blood sugar and lipid levels, and preserve muscle mass and exercise capacity.
• Increased NAD+ levels: Oxidized nicotinamide adenine dinucleotide (NAD+) is a coenzyme crucial to cellular energy production. This coenzyme is found in every cell of the body and is necessary to make ATP (adenosine triphosphate)—the compound the body uses for fuel. Declining NAD+ levels are directly associated with aging. This leads to impaired mitochondrial function, resulting in numerous age-related diseases. NAD+ is also needed to activate sirtuins. Restoring NAD+ to more youthful levels can help rejuvenate an aging body and improve resistance to disease.
Inhibiting NF-κB: Where there is aging there is chronic inflammation. The relationship is so intimate that scientists have coined the term “inflammaging.” This refers to the ongoing, low-grade inflammation that occurs as we grow older. It promotes the development of age-related disease. If we can interrupt this type of inflammation, we can slow and help reverse a chief cause of degenerative aging. Scientists uncovered a key gene-regulating protein complex called Nuclear Factor-Kappa B (NF-κB). NF-κB is a primary driver of inflammation and inhibiting its production can reverse chronic inflammation and its negative effects.
To experience the benefits of fasting, I refrain from eating for 16 hours a day, limit my window period of eating to 6 hours, and have two meals per day: one at 12:00 noon and the other at 6:00 pm. As an alternative, I have 9 hours of fasting in between my two meals and eat at 10:00 am and 7:00 pm. I avoid snacking between meals. Based on the latest science, I take a calorie-restriction-mimetic cocktail of hydroxycitrate, bioavailable curcumin, luteolin, nicotinamide riboside to amplify the above molecular pathways, piperlongumine, pterostilbene, spermidine, and white willow bark extract.

STEP 5: Reset genes
With aging, there is an increase in the expression of genes that promote inflammation, oxidative stress, insulin resistance, cancer, and tissue deterioration, along with a simultaneous decrease in the expression of genes that inhibit inflammation, oxidative stress, and cancer, and promote insulin sensitivity, DNA repair, and removal of damaged proteins. One of the most significant scientific discoveries in decades, in my opinion, was the discovery of a human tripeptide called GHK (glycyl-L-histidyl-L-lysine) that was found to reset gene expression of human cells to a healthier state. This opened the door to a whole new way to prevent and treat age-related diseases and restore a more youthful state of health. Based on this promising scientific data, I take GHK administered as a painless microinjection.

STEP 6: Restore youthful immune function
Immuno-senescence is the term that refers to the progressive decline in immune function brought on by advancing age. It underlies many of the diseases of aging. It also accelerates the aging process itself by causing a state of hyper-inflammation that damages neurons, blood vessels, and joints. Immuno-senescence also increases the risk of cancer as well as frequent and severe infections. To live a longer and healthier life, we need our immune system to function at peak performance. Based on the latest science, I use a combination of Cistanche extract, Pu-erh tea, and reishi mushroom to target immunosenescence. These compounds have been found to improve immune function by various and complementary mechanisms.

STEP 7: Regenerate the endothelial glycocalyx
The endothelial glycocalyx is a microscopically thin, gel-like, non-stick layer that coats the inside of our 60,000 miles of blood vessels. It is the guardian of our blood vessels and key to maintaining circulatory health. By age 40, the glycocalyx begins to deteriorate. This eventually leads to a host of health issues, including hypertension, heart disease, stroke, erectile dysfunction, pre-diabetes and diabetes, loss of visual acuity, kidney disease, dementia, viral infections, and exercise intolerance. To reverse the deterioration of the endothelial glycocalyx layer, I take rhamnan sulfate—a natural compound derived from the edible seaweed Monostroma nitidum—that has been found to regenerate the endothelial glycocalyx.

Comments from Dr. Thomas: Please note that this information for educational purposes only. It is not intended or implied to be a substitute for professional medical advice, diagnosis, treatment, and monitoring by your personal physician. Therefore, I cannot give specific dosages or treatment guidelines. That is for your personal physician to determine after studying the references below.

Dr. Daniel Thomas, DO, MS
Mount Dora, Florida

Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Autophagy regulation using luteolin: new insight into its anti-tumor activity. Cancer Cell Int. 2020 Nov 4;20(1):537.
Bagherniya M, Butler AE, Barreto GE, Sahebkar A. The effect of fasting or calorie restriction on autophagy induction: A review of the literature. Ageing Res Rev. 2018 Nov;47:183-197.
Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, Stryeck S, Rijksen Y, van Willigenburg H, Feijtel DA, van der Pluijm I, Essers J, van Cappellen WA, van IJcken WF, Houtsmuller AB, Pothof J, de Bruin RWF, Madl T, Hoeijmakers JHJ, Campisi J, de Keizer PLJ. Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell. 2017 Mar 23;169(1):132-147.e16.
Blagosklonny MV. From rapalogs to anti-aging formula. Oncotarget. 2017;8(22):35492-35507.
Castello L, Froio T, Maina M, Cavallini G, Biasi F, Leonarduzzi G, Donati A, Bergamini E, Poli G, Chiarpotto E. Alternate-day fasting protects the rat heart against age-induced inflammation and fibrosis by inhibiting oxidative damage and NF-kB activation. Free Radic Biol Med. 2010 Jan 1;48(1):47-54.
Chan EWC, Wong CW, Tan YH, Foo JPY, Wong SK, Chan HT. Resveratrol and pterostilbene: A comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. J Appl Pharm Sci, 2019; 9(07):124–129.
de Jesus Raposo MF, de Morais AM, de Morais RM. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs. 2015 May 15;13(5):2967-3028.
Gill BS, Sharma P, Kumar R, Kumar S. Misconstrued versatility of Ganoderma lucidum: a key player in multi-targeted cellular signaling. Tumour Biol. 2016 Mar;37(3):2789-804.
Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019 Sep;47:446-456.
Imai SI, Guarente L. It takes two to tango: NAD+ and sirtuins in aging/longevity control. NPJ Aging Mech Dis. 2016;2:16017. Published 2016 Aug 18.
Kim EC, Kim JR. Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Rep. 2019;52(1):47-55.
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020 Nov;288(5):518-536.
Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metab. 2019 Mar 5;29(3):592-610.
Malavolta M, Pierpaoli E, Giacconi R, Basso A, Cardelli M, Piacenza F, Provinciali M. Anti-inflammatory Activity of Tocotrienols in Age-related Pathologies: A SASPected Involvement of Cellular Senescence. Biol Proced Online. 2018 Nov 20;20:22.
Machin DR, Phuong TT, Donato AJ. The role of the endothelial glycocalyx in advanced age and cardiovascular disease. Curr Opin Pharmacol. 2019;45:66-71.
Mehmel M, Jovanović N, Spitz U. Nicotinamide Riboside-The Current State of Research and Therapeutic Uses. Nutrients. 2020;12(6):1616.
Pazoki-Toroudi H, Amani H, Ajami M, Nabavi SF, Braidy N, Kasi PD, Nabavi SM. Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing. Ageing Res Rev. 2016 Nov;31:55-66.
Perrott KM, Wiley CD, Desprez PY, Campisi J. Apigenin suppresses the senescence-associated secretory phenotype and paracrine effects on breast cancer cells. Geroscience. 2017 Apr;39(2):161-173.
Rajman L, Chwalek K, Sinclair DA. Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence. Cell Metab. 2018;27(3):529-547.
Rymut N, Heinz J, Sadhu S, Hosseini Z, Riley CO, Marinello M, Maloney J, MacNamara KC, Spite M, Fredman G. Resolvin D1 promotes efferocytosis in aging by limiting senescent cell-induced MerTK cleavage. FASEB J. 2020 Jan;34(1):597-609.
Shakeri F, Bianconi V, Pirro M, Sahebkar A. Effects of Plant and Animal Natural Products on Mitophagy. Oxid Med Cell Longev. 2020 Mar 10;2020:6969402.
Suzuki K, Terasawa M. Biological Activities of Rhamnan Sulfate Extract from the Green Algae Monostroma nitidum (Hitoegusa). Mar Drugs. 2020 Apr 24;18(4):228.
Wang R, Yu Z, Sunchu B, Shoaf J, Dang I, Zhao S, Caples K, Bradley L, Beaver LM, Ho E, Löhr CV, Perez VI. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism. Aging Cell. 2017 Jun;16(3):564-574.
Wang Y, Wang JW, Xiao X, Shan Y, Xue B, Jiang G, He Q, Chen J, Xu HG, Zhao RX, Werle KD, Cui R, Liang J, Li YL, Xu ZX. Piperlongumine induces autophagy by targeting p38 signaling. Cell Death Dis. 2013 Oct 3;4(10):e824.
Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann-Stroissnigg H, Xu M, Ling YY, Melos KI, Pirtskhalava T, Inman CL, McGuckian C, Wade EA, Kato JI, Grassi D, Wentworth M, Burd CE, Arriaga EA, Ladiges WL, Tchkonia T, Kirkland JL, Robbins PD, Niedernhofer LJ. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018 Oct;36:18-28.
Yu S, Wang X, Geng P, Tang X, Xiang L, Lu X, Li J, Ruan Z, Chen J, Xie G, Wang Z, Ou J, Peng Y, Luo X, Zhang X, Dong Y, Pang X, Miao H, Chen H, Liang H. Melatonin regulates PARP1 to control the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cells. J Pineal Res. 2017 Aug;63(1).
Zemel MB, Kolterman O, Rinella M, Vuppalanchi R, Flores O, Barritt AS 4th, Siddiqui M, Chalasani N. Randomized Controlled Trial of a Leucine-Metformin-Sildenafil Combination (NS-0200) on Weight and Metabolic Parameters. Obesity (Silver Spring). 2019 Jan;27(1):59-67.
Zhang K, Ma X, He W, Li H, Han S, Jiang Y, Wu H, Han L, Ohno T, Uotsu N, Yamaguchi K, Ma Z, Tu P. Extracts of Cistanche deserticola Can Antagonize Immunosenescence and Extend Life Span in Senescence-Accelerated Mouse Prone 8 (SAM-P8) Mice. Evid Based Complement Alternat Med. 2014;2014:601383.
Zhang L, Shao WF, Yuan LF, Tu PF, Ma ZZ. Decreasing pro-inflammatory cytokine and reversing the immunosenescence with extracts of Pu-erh tea in senescence accelerated mouse (SAM). Food Chem. 2012 Dec 15;135(4):2222-8.
'References: P, Ling X, Zhou L. Advancements in therapeutic drugs targeting of senescence. Ther Adv Chronic Dis. 2020 Oct 13;11:2040622320964125.
Located in Mount Dora, Florida, Dr. Thomas is one of the most educated, experienced, and innovative physicians in North America. Over the past 30 years, he has helped people throughout the United States and Canada to prevent and overcome disease, improve their health, slow aging, and increase their lifespan. As an active translational researcher, Dr. Thomas has spent over 35,000 hours poring over the latest scientific discoveries and translating max. discoveries into promising theories


© 2022 Smart + Strong. All Rights Reserved.   terms of use and your privacy
Smart + Strong® is a registered trademark of CDM Publishing, LLC.